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CHAPTER 1

INTRODUCTION

1.1 Dynamical Systems and Bifurcations

“If we knew exactly the laws of nature and the situation of the universe at the
initial moment, we could predict exactly the situation of the same universe
at a succeeding moment.”

This quote, usually attributed to nineteenth century French mathematician
Henri Poincaré, illustrates a key concept in all of science; the notion that
‘things can be predicted’ from previous data. Even though quantum me-
chanics tells us that the situation is at least a bit more complicated than
what is suggested in this quote, the underlying idea has not lost its value. A
little addendum might be in order though: whereas Poincaré suggests that
an exact understanding of the state of the universe and of the laws of this
universe should do the trick, I personally think a third ingredient is neces-
sary. This would be a perfect (or at least highly impressive) understanding
of how the state of the universe reacts to the laws of nature. This is where
the mathematical field of dynamical systems comes into play.

To illustrate: many people might still remember Newton’s second law of
motion from high school. It reads

F = m · a . (1.1.1)

This is an example of a law of nature. Here F is some force, m is the mass
of an object and a is the acceleration of that object. For example, we might
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throw a penny off the Eiffel Tower, and wonder about its height after some
time. If we know all the data of this situation, such as the height of the
Eiffel Tower, the mass of the penny and the force of gravity, then Poincaré’s
observation tells us that we can solve for the height of the penny after, say,
a second of falling. Herein lies the difficulty though, equation (1.1.1) does
not tell us anything about the position of the penny. It only gives us the
penny’s acceleration a. That is, we only know about the change of the ve-
locity, which is ‘the change of the change’ of the position. Fortunately, it is
not hard to solve for the height of the penny in this particular situation, but
it illustrates a common problem in physics: the laws of nature describe how
things change, but they often do so only obliquely.

The field of mathematics that is concerned with predicting how a system
changes over time is called dynamical systems theory. Very often, this field
of mathematics is called upon to predict how a physical event plays out.
Think about a falling object, the motion of the planets, a chemical reaction,
oceanic currents or the change in voltage over a computer chip. Other times,
the techniques and machinery from dynamical systems theory are used to
aid other fundamental fields of mathematics. Whatever the case, questions
about dynamical systems can become very hard. As a matter of fact, many
successes from this area of mathematics are due not to long and complicated
calculations, but rather to finding the right questions to ask (as well as the
right questions to avoid).

Be it by chaos, the sheer size of the model or a mathematical quirk of
the system, many questions from dynamical systems theory cannot be solved
explicitly. There are many examples of relatively simple dynamical systems
where we cannot solve for the exact state of the model in the succeeding
moment. Often though, we do not need to know the exact state of the
model, but rather the approximate, qualitative information. That is, we
might want to know if a satellite can be brought into orbit, if an animal
population remains stable over time or if a decision can be made by a com-
mittee, but we are not interested in the exact height of the orbit, the precise
number of animals or the exact number of votes in favor. As it turns out,
questions like these can often be solved more easily than those asking for
precise values. Another reason why the former questions are the right ones
to ask, is because they are more stable or robust in nature. Many things in
the world cannot be measured with absolute certainty, but whereas exact
outcomes will always vary as initial conditions do, qualitative information
often remains unchanged; the satellite will probably still circle the earth if it
has a slightly different mass, but the height at which it does will most likely
be altered.

Whereas precise values will alter every time a parameter is tweaked, qua-
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CHAPTER 1. INTRODUCTION

litative information only changes when the parameter value crosses a specific
threshold. This is the idea behind a bifurcation. It can roughly be defined
as a qualitative change in the dynamics of a parameter-dependent system,
caused by a slight change in that parameter. As an example, consider the
most basic mathematical model of a dynamical system: an ordinary diffe-
rential equation, or ODE for short, is an equation of the form

dx(t)

dt
= f(x) . (1.1.2)

Here f is a vector field on some space V , meaning that it assigns a speed
and direction of movement to each point in V . The function x(t) is a one-
dimensional curve in V , parameterised by t in some interval in R (very often
t is, of course, just time). Equation (1.1.2) simply tells us that the curve
x(t) changes in a direction and with a magnitude dictated by the vector field
f . It is our job to find x(t) (or to at least say something meaningful about
it) when f is given. Note that we have already seen this set-up, namely in
the situation of the falling penny. There, we wanted to find the height of
the penny after a second of falling, so x(t) for t = 1. However, we were only
given its acceleration

a :=
d2x(t)

dt2
(1.1.3)

by equation (1.1.1). Even though the equation

d2x(t)

dt2
=
F

m
(1.1.4)

that we get from rewriting equation (1.1.1) involves a second derivative in-
stead of a first, one can easily recast this equation to one of the form (1.1.2).
Returning to equation (1.1.2), it could be that the vector field f depends
on some parameter that is not completely known, or that might slowly shift
over time. We therefore get a family of ODE’s, denoted by

dx(t)

dt
= f(x, λ) . (1.1.5)

What we have added here is the parameter λ, which takes values in some
parameter space Ω ⊂ Rk. Note that λ does not change over time in this
model. Hence, for fixed values of λ we get equations of the form (1.1.2)
back for different vector fields f . Of course we expect these vector fields to
vary smoothly in λ, but this can still cause abrupt changes in the qualitative
behaviour of the system.
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For example, if we set f(x, λ) = x2− λ, with both x and λ taking values
in R, then f(x, λ) is always positive if λ is negative. As a result, for these
values of λ any initial state will just grow forever as time progresses. If λ is
positive though, the vector field f has zeroes at x =

?
λ and at x = −

?
λ.

This means that the dynamics does not change if it starts at these points,
and we call them steady state points. Hence, this is an example of a steady
state bifurcation. What is more, it can be shown that the point x = −

?
λ is

attractive, meaning that it has a neighbourhood of points that will approach
it as time progresses. Note that this situation is very different from what we
saw for λ < 0. Figure 1.1 shows a sketch of the situation. This particular
steady state bifurcation is known as a saddle-node bifurcation. Steady state
bifurcations are by no means the only bifurcations possible. For example,
there are scenarios where periodic orbits appear, most notably in a Hopf
bifurcation. Likewise, saddle-node bifurcations are not the only steady state
bifurcations. However, they are in some way the most ‘likely’ ones, as we
will see below.

Figure 1.1: A saddle-node bifurcation. Depicted here are the steady state points.
That is, points (x, λ) where f(x, λ) = 0. Green denotes stable steady state points,
whereas red denotes unstable steady state points. The blue arrows show the direction
of the vector field.

1.2 Network Structures

Many dynamical systems modeling real-life phenomena come with an inhe-
rent network structure. Think about the brain, social media, the spread
of a disease, social decision making or competing populations of animals.
In all cases, there are clearly distinguished units or cells together with a
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structure of dependence between them. Mathematically, this means that
the cells correspond to different variables. These variables then come with a
prescribed set of rules determining what other variables they influence and
what kind of influence this is.

For example, consider three populations of animals that live in the same
area. Two of them, populations A and B, might belong to the same species,
but form different competing colonies. They might be predators, and hunt
for species C. Hence, the populations of A and B both rely on that of C,
and they do so in the same manner. Likewise, the population of C depends
on that of A and B. Of course, the population of species C also depends
on itself, but it does so in a very different way from how it depends on the
population of its predators. If only, this is because a larger population of
species C will cause a greater increase in that same population (neglecting
effects of overpopulation), whereas a greater population of predators A and
B will generally cause a lower increase in population C. On top of this, A
and B might also compete for territory, and hence negatively influence each
other’s population. Putting all this together, we get the ODE given by

9xA = f(xA, xC , xB) (1.2.1)
9xB = f(xB , xC , xA)

9xC = g(xC , xA, xB) ,

where 9xI , I ∈ {A,B,C}, is just shorthand notation for the derivative with
respect to time. That is,

9xA :=
dxA(t)

dt
(1.2.2)

and so on.
Now, populations A and B correspond to the same species. Therefore,

we assume that their variables xA and xB take values in some same phase
space V . For this same reason, they react to their environment by the
same response function f . In this function, the first slot describes how each
population depends on its own population ‘moments ago’. The second slot
(the red one) captures the effect that the population of prey animals has and
the third slot (the blue one) describes the effect of territorial competition.
Population C represents a different species and therefore corresponds to a
variable xC in some (a priori) different phase space W . Likewise, it has a
different response function g. Again, the first slot of g corresponds to the
effect of the population on the growth of itself. (This variable is depicted in
grey rather than in black to emphasise the convention that different types
of variables can, by definition, never receive input of the same kind). The

12



1.3. GENERALITY

green variables signify the effects of A and B on the population of C. The
bar over these variables means that we may freely interchange them without
effect. That is, we have

g(xC , xA, xB) = g(xC , xB , xA) , (1.2.3)

for all values of xA, xB and xC . This is done because the effects of A and B
on C should be identical. Except for the response functions f and g and the
phase spaces V and W , all of this information is included in the graph of
Figure 1.2. Here the cells depict the different populations A, B and C and
the arrows correspond to the different effects they have on each other. (We
have left out the black and grey self loops for convenience).

A C

B

Figure 1.2: A network describing the relations between different populations of
animals A, B and C.

In this thesis we will mainly look at homogenous networks, meaning that all
cells are of the same type and all response functions are therefore identical.
The reason for this is mainly convenience; many of the results still hold for
inhomogeneous networks, but become more technical and notationally much
less transparent. As all cells are identical, they each receive input from the
same number of arrows for each color of arrow. What we will also assume is
that this number is always 1. That is, each cell receives input from exactly
one arrow of each color. This condition is more important though, as many
of the techniques in this thesis have not yet been extended to the general
case in a satisfactory way.

1.3 Generality

The main purpose of this thesis is understanding generic phenomena, most
notably generic bifurcations, in network dynamical systems. To see what

13



CHAPTER 1. INTRODUCTION

this term means, we revisit the family of ODEs in equation (1.1.5):

9x = f(x, λ) . (1.3.1)

Let us assume that both x and λ take values in R. If we consider equation
(1.3.1) for all possible smooth vector fields f(x, λ), then it seems that any
steady state bifurcation could occur. In fact, it is known that any closed
subset of R2 can occur as the zero-set of some smooth map f : R2 → R.
However, in a way some bifurcations are more ‘likely’ than others. To illus-
trate, let us assume that f has a steady state point at (x, λ) = (0, 0). In
other words, it holds that f(0, 0) = 0. Now, if the derivative of f in the
x-direction does not vanish at (0, 0), then the implicit function theorem tells
us that there is no (interesting) bifurcation near (0, 0). More precisely, it fol-
lows that the steady state points are locally parametrised by λ. Therefore,
we also set this derivative equal to zero. Equation (1.3.1) now becomes

9x = aλ+ bx2 + ‘higher order terms’ , (1.3.2)

for a and b in R. As it turns out, as long as both a and b are unequal to
0, there always occurs a saddle-node bifurcation. As a general function f
will not have any of these two coefficients vanish, we say that a saddle-node
bifurcation is the generic steady state bifurcation for systems of the form
(1.3.1).

As it turns out, this result relies strongly on the class of functions f
that we allow. For example, if we only allow for smooth maps f satisfying
the symmetry condition f(−x, λ) = −f(x, λ) for all values of x and λ in
R, then we generically get a pitchfork bifurcation instead of a saddle-node
bifurcation. See Figure 1.3. This seems paradoxical: we know that for a
general vector field we almost always get a saddle-node bifurcation, shouldn’t
we then also get this bifurcation for most symmetric vector fields? The
answer is in the numbers a and b of equation (1.3.2). These are non-zero
for most vector fields f , but this is not true for most symmetric vector fields
f . As a matter of fact, the condition f(−x, λ) = −f(x, λ) forces b to be
0. Another way to see that the saddle-node bifurcation is not the generic
situation here is by noting that we have f(0, λ) = f(−0, λ) = −f(0, λ).
Therefore, we have f(0, λ) = 0 for all values of λ. This completely excludes
the saddle-node bifurcation! We see that symmetry can apparently force
behaviour that is otherwise unheard of.
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Figure 1.3: An example of a pitchfork bifurcation.

1.4 Generic Bifurcations in Network Dynami-
cal Systems

As it turns out, many network vector fields likewise show unusual behaviour
as a generic occurrence. For example, we could look at all equations of the
form

9x1 = f(x1, x2, x2, x3, λ) (1.4.1)
9x2 = f(x2, x3, x2, x3, λ)

9x3 = f(x3, x3, x2, x3, λ) ,

for some response function f . These correspond to the network of Figure
1.4. There are two bifurcation scenarios that generically occur for this class
of network vector fields. The first of these is the familiar saddle-node bi-
furcation. The second one is more surprising and is shown in Figure 1.5.
Needles to say this scenario is highly unusual in a general class of vector
fields (without a network structure).
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1 2

3

Figure 1.4: A homogeneous netwerk with three cells.

Figure 1.5: A very unusual steady state bifurcation.

This thesis aims at explaining why network dynamical systems display such
anomalous behaviour. We have already hinted at a possible answer: another
feature that forces unusual phenomena is symmetry. As it turns out, a
large class of network vector fields indeed admits a description in terms of
symmetry. It is often not as visible as in the equation f(−x, λ) = −f(x, λ)
though, but instead lies ‘hidden’ in some extension of the original system.
Furthermore, the kind of symmetry that rears its head in network dynamical
systems often fails to form a group, as is classically the case. Rather, it
represents some weaker notion, such as a so-called semigroup or monoid.
Nevertheless, many techniques from the study of group-symmetry can still be
applied or adapted to this new setting. This idea of using hidden symmetry
runs like a common thread through the entire thesis.

16



1.5. STRUCTURE OF THE THESIS

1.5 Structure of the Thesis

The main body of this thesis consists of four chapters, each of which is a
self-contained scientific article. The first of these, chapter 2, is contained
in the article “Graph fibrations and symmetries of network dynamics”, (J.
Differ. Equations 261, 2016). It introduces the language of graph fibrations,
used to visualise relations between networks graphs. Using this formalism,
it is shown that a large class of network vector fields has some form of hid-
den symmetry. This means that the networks themselves might not have any
symmetry, but instead form the restriction of a very symmetric system called
the fundamental network. The article “Graph fibrations and symmetries of
network dynamics” contains some additional results using graph fibrations
that are not included in this thesis.

Chapter 3 has been published as “Center Manifolds of Coupled Cell Net-
works”, (SIAM Journal on Mathematical Analysis 49.5, 2017). In here, the
machinery of center manifold reduction is adapted to fit the setting of net-
work dynamical systems. In particular, it is shown that the resulting reduced
vector fields, in a way, still retain their original network structure. More-
over, this reduction respects synchrony, a very important network property
whereby different cells behave in unison. Ultimately, these results rely on
the formalism introduced in the previous chapter. This is because network
structures are notoriously hard to track through many mathematical con-
structions, whereas (hidden) symmetry seems to be significantly better be-
haved.

With the tools of chapter 3 at hand, chapter 4 focusses on proving some
first results relating generic bifurcations in network systems to their graphs.
More precisely, it is shown that a special structure in a graph, called a pro-
jection block, may be shrunk to a single cell to obtain a smaller graph. Many
of the dynamical properties of this smaller network then still hold true for
the original one. Ultimately, the goal is to use techniques such as these to
fully decompose any network into smaller, more manageable components to
understand its dynamical behaviour. Chapter 4 corresponds to the article
“Projection blocks in homogeneous coupled cell networks”, (Dynamical Sys-
tems 32.1, 2017).

Finally, chapter 5 is available as a preprint on arxiv.org, under the name
“Transversality in Dynamical Systems with Generalized Symmetry”. It fo-
cusses on adapting a well-known technical result on group symmetry to the
more exotic kinds of symmetry that turn up in the study of networks. In
broad terms, it describes what linear behaviour to consider when predicting
bifurcations in systems with such a symmetry.
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